add endstop detection

This commit is contained in:
Lucien Renaud 2022-08-30 11:21:03 +02:00
parent 77896cfc55
commit 526ffacd4f
3 changed files with 141 additions and 109 deletions

View File

@ -5,12 +5,10 @@ float norm(float x, float in_min, float in_max, float out_min = -1.0, float out_
return (float)(x - in_min) * (out_max - out_min) / (float)(in_max - in_min) + out_min; return (float)(x - in_min) * (out_max - out_min) / (float)(in_max - in_min) + out_min;
} }
LinearHallSensor::LinearHallSensor(uint8_t ch1, uint8_t ch2, float minPos, float maxPos) LinearHallSensor::LinearHallSensor(uint8_t ch1, uint8_t ch2)
{ {
_analogPin1 = ch1; _analogPin1 = ch1;
_analogPin2 = ch2; _analogPin2 = ch2;
_minPositionEndValue = minPos;
_maxPositionEndValue = maxPos;
} }
void LinearHallSensor::init(BLDCMotor motor) void LinearHallSensor::init(BLDCMotor motor)
@ -22,68 +20,129 @@ void LinearHallSensor::init(BLDCMotor motor)
uint32_t senseA = analogRead(_analogPin1); uint32_t senseA = analogRead(_analogPin1);
uint32_t senseB = analogRead(_analogPin2); uint32_t senseB = analogRead(_analogPin2);
uint32_t oldSenseA = 0;
uint32_t oldSenseB = 0;
_minCh1 = senseA; _minCh1 = senseA;
_maxCh1 = senseA; _maxCh1 = senseA;
_minCh2 = senseB; _minCh2 = senseB;
_maxCh2 = senseB; _maxCh2 = senseB;
// Swipe motor // Swipe motor to search hard end and find max analog values of sensors
for (float i = _minPositionEndValue; i <= _maxPositionEndValue; i = i + 0.005) bool endFound = false;
{ const float step = 0.0025;
motor.move(i); uint8_t currentCheck = 0; // current check number
delay(1); const uint8_t nCheck = 15; // number of times to check if its the same value
senseA = analogRead(_analogPin1); const uint8_t epsilon = 3;
senseB = analogRead(_analogPin2); float currentPosition = 0.0;
if (senseA > _maxCh1)
_maxCh1 = senseA;
else if (senseA < _minCh1)
_minCh1 = senseA;
if (senseB > _maxCh1)
_maxCh1 = senseB;
else if (senseB < _minCh2)
_minCh2 = senseB;
}
delay(100);
for (float i = _maxPositionEndValue; i >= _minPositionEndValue; i = i - 0.005)
{
motor.move(i);
delay(1);
senseA = analogRead(_analogPin1);
senseB = analogRead(_analogPin2);
if (senseA > _maxCh1)
_maxCh1 = senseA;
else if (senseA < _minCh1)
_minCh1 = senseA;
if (senseB > _maxCh1)
_maxCh1 = senseB;
else if (senseB < _minCh2)
_minCh2 = senseB;
}
// Min offset with 50 values average Serial.println("\tFinding end stops");
float sum = 0.0; while (!endFound)
for (uint8_t i = 0; i <= 49; i++)
{ {
_offset = 0.0; Serial.print("Position =" + String(currentPosition) + '\t');
sum += readSensorCallback(); Serial.print("SenseA =" + String(senseA) + "\tSenseB =" + String(senseB));
Serial.print("\tOldseA =" + String(oldSenseA) + "\tOldseB =" + String(oldSenseB) + "\tchecked =" + String(currentCheck) + "\r");
senseA = analogRead(_analogPin1);
senseB = analogRead(_analogPin2);
// Check if new extremes sensor values
if (senseA > _maxCh1)
_maxCh1 = senseA;
else if (senseA < _minCh1)
_minCh1 = senseA;
if (senseB > _maxCh1)
_maxCh1 = senseB;
else if (senseB < _minCh2)
_minCh2 = senseB;
// Compare with previous position
if ((abs((int)(senseA - oldSenseA)) < epsilon) && (abs((int)(senseB - oldSenseB)) < epsilon))
{
if (currentCheck == nCheck)
endFound = true;
else
currentCheck++;
}
else
currentCheck = 0;
// Replace previous values
oldSenseA = senseA;
oldSenseB = senseB;
// Move to new position
currentPosition += step;
motor.move(currentPosition);
delay(2);
} }
_maxPositionEndValue = currentPosition - (step * nCheck);
currentPosition = _maxPositionEndValue;
motor.move(currentPosition);
Serial.println("Found first end stop : Max position = " + String(_maxPositionEndValue));
delay(100);
// Swipe motor to search other hard end and find eventually new max analog values of sensors
endFound = false;
currentCheck = 0;
while (!endFound)
{
senseA = analogRead(_analogPin1);
senseB = analogRead(_analogPin2);
// Check if new extremes sensor values
if (senseA > _maxCh1)
_maxCh1 = senseA;
else if (senseA < _minCh1)
_minCh1 = senseA;
if (senseB > _maxCh1)
_maxCh1 = senseB;
else if (senseB < _minCh2)
_minCh2 = senseB;
// Compare with previous position
if ((abs((int)(senseA - oldSenseA)) < epsilon) && (abs((int)(senseB - oldSenseB)) < epsilon))
{
if (currentCheck == nCheck)
endFound = true;
else
currentCheck++;
}
else
currentCheck = 0;
// Replace previous values
oldSenseA = senseA;
oldSenseB = senseB;
// Move to new position
currentPosition -= step;
motor.move(currentPosition);
delay(2);
}
_minPositionEndValue = currentPosition + (step * nCheck);
Serial.println("Found second end stop : Min position = " + String(_minPositionEndValue));
delay(100);
// Set min offset with 50 values average
float sum = 0.0;
_offset = 0.0;
for (uint8_t i = 0; i <= 49; i++)
sum += readSensorCallback();
_offset = -sum / 50.0; _offset = -sum / 50.0;
Serial.println("\n\rmaxA: " + String(_maxCh1) + "\tminA: " + String(_minCh1) + "\tmaxB: " + String(_maxCh2) + "\tminB: " + String(_minCh2)); Serial.println("\n\rmaxA: " + String(_maxCh1) + "\tminA: " + String(_minCh1) + "\tmaxB: " + String(_maxCh2) + "\tminB: " + String(_minCh2));
Serial.println("Offset: " + String(_offset)); Serial.println("Offset: " + String(_offset));
// Detect max angle // Read max angle
for (float i = _minPositionEndValue; i <= _maxPositionEndValue; i = i + 0.01) for (float i = _minPositionEndValue; i <= _maxPositionEndValue; i = i + 0.005)
{ {
motor.move(i); motor.move(i);
delay(1); delay(1);
_maxSensor = readSensorCallback(); _maxSensor = readSensorCallback();
} }
Serial.println("current motor angle: " + String(motor.electricalAngle()));
delay(250); delay(250);
// take average value of 50 values // Set max take average value of 50 values
sum = 0.0; sum = 0.0;
for (uint8_t i = 0; i <= 49; i++) for (uint8_t i = 0; i <= 49; i++)
sum += readSensorCallback(); sum += readSensorCallback();
@ -92,7 +151,7 @@ void LinearHallSensor::init(BLDCMotor motor)
Serial.println("Max sensor: " + String(_maxSensor)); Serial.println("Max sensor: " + String(_maxSensor));
// Recovering previous controller type and go in the middle // Recovering previous controller type and go in the middle
for (float i = _maxPositionEndValue; i >= _minPositionEndValue / 2.0; i = i - 0.01) for (float i = _maxPositionEndValue; i >= (_maxPositionEndValue + _minPositionEndValue) / 2.0; i = i - 0.01)
{ {
motor.move(i); motor.move(i);
delay(1); delay(1);

View File

@ -15,10 +15,8 @@ class LinearHallSensor
Linear Hall Sensor class constructor Linear Hall Sensor class constructor
@param ch1 Analog pin for channel 1 @param ch1 Analog pin for channel 1
@param ch2 Analog pin for channel 2 @param ch2 Analog pin for channel 2
@param minPos Minimum position in Openloop
@param maxPos Maximum position in Openloop
*/ */
LinearHallSensor(uint8_t ch1, uint8_t ch2, float minPos, float maxPos); LinearHallSensor(uint8_t ch1, uint8_t ch2);
/** /**

View File

@ -3,22 +3,20 @@
#include <linearHallSensor.h> #include <linearHallSensor.h>
#include <pinout.h> #include <pinout.h>
BLDCMotor motor = BLDCMotor(4); BLDCMotor motor1 = BLDCMotor(4);
BLDCDriver3PWM driver = BLDCDriver3PWM(M2_PWM1, M2_PWM2, M2_PWM3); BLDCDriver3PWM driver1 = BLDCDriver3PWM(M3_PWM1, M3_PWM2, M3_PWM3);
LinearHallSensor linearSensor1 = LinearHallSensor(M3_Hall1, M3_Hall2);
LinearHallSensor linearSensor = LinearHallSensor(M2_Hall1, M2_Hall2, -0.75, 2.35); void initSensor1()
void initSensor()
{ {
linearSensor.init(motor); linearSensor1.init(motor1);
}
float callback1()
{
return linearSensor1.readSensorCallback();
} }
float callback() GenericSensor sensor1 = GenericSensor(callback1, initSensor1);
{
return linearSensor.readSensorCallback();
}
GenericSensor sensor = GenericSensor(callback, initSensor);
float targetX = 0.0; float targetX = 0.0;
float targetY = 0.0; float targetY = 0.0;
@ -51,68 +49,45 @@ void setup()
{ {
Serial.begin(115200); Serial.begin(115200);
delay(2000); delay(5000);
Serial.println("INIT"); Serial.println("INIT");
// pinMode(M1_PWM1, OUTPUT); pinMode(LED_BUILTIN, OUTPUT); // Lightup LED
// pinMode(M1_PWM2, OUTPUT); digitalWrite(LED_BUILTIN, LOW);
// pinMode(M1_PWM3, OUTPUT);
// digitalWrite(M1_PWM1, LOW);
// digitalWrite(M1_PWM2, LOW);
// digitalWrite(M1_PWM3, LOW);
// pinMode(M2_PWM1, OUTPUT); driver1.voltage_power_supply = 7.1;
// pinMode(M2_PWM2, OUTPUT); driver1.init();
// pinMode(M2_PWM3, OUTPUT); motor1.linkDriver(&driver1);
// digitalWrite(M2_PWM1, LOW); motor1.useMonitoring(Serial);
// digitalWrite(M2_PWM2, LOW); motor1.controller = MotionControlType::angle;
// digitalWrite(M2_PWM3, LOW); motor1.foc_modulation = FOCModulationType::SinePWM;
motor1.voltage_limit = 1.0;
// pinMode(M3_PWM1, OUTPUT); motor1.voltage_sensor_align = 1.0;
// pinMode(M3_PWM2, OUTPUT); motor1.PID_velocity.P = 0.05f;
// pinMode(M3_PWM3, OUTPUT); motor1.PID_velocity.I = 0.01;
// digitalWrite(M3_PWM1, LOW); motor1.PID_velocity.D = 0.0;
// digitalWrite(M3_PWM2, LOW); motor1.LPF_velocity.Tf = 0.01f;
// digitalWrite(M3_PWM3, LOW); motor1.P_angle.P = 150.0;
motor1.P_angle.I = 10.0;
pinMode(LED_BUILTIN, OUTPUT); // Lightup LED motor1.velocity_limit = 25;
digitalWrite(LED_BUILTIN, HIGH);
driver.voltage_power_supply = 5.0;
driver.init();
motor.linkDriver(&driver);
motor.useMonitoring(Serial);
motor.controller = MotionControlType::angle;
motor.foc_modulation = FOCModulationType::SinePWM;
motor.voltage_limit = 1.5;
motor.voltage_sensor_align = 0.8;
motor.PID_velocity.P = 0.075f;
motor.PID_velocity.I = 0.01;
motor.PID_velocity.D = 0.0;
motor.LPF_velocity.Tf = 0.01f;
motor.P_angle.P = 120.0;
motor.P_angle.I = 10.0;
motor.velocity_limit = 50;
motor.useMonitoring(Serial);
// Init sensor // Init sensor
motor.init(); motor1.init();
Serial.println("calibrating sensor in open loop..."); Serial.println("calibrating sensor in open loop...");
sensor.init(); sensor1.init();
Serial.println("Done"); Serial.println("Done");
delay(1000); delay(1000);
motor.linkSensor(&sensor); motor1.linkSensor(&sensor1);
motor.init(); motor1.init();
// motor.initFOC(5.48, CCW); // motor.initFOC(5.48, CCW);
motor.initFOC(); motor1.initFOC();
} }
void loop() void loop()
{ {
serialLoop(); serialLoop();
motor.move(target); motor1.move(target);
motor.loopFOC(); motor1.loopFOC();
motor.monitor(); motor1.monitor();
} }